Tensor products of Sobolev-Besov spaces and applications to approximation from the hyperbolic cross
نویسندگان
چکیده
Besov as well as Sobolev spaces of dominating mixed smoothness are shown to be tensor products of Besov and Sobolev spaces defined on R. Based on this we derive several useful characterizations from the the one-dimensional case to the ddimensional situation. Finally, consequences for hyperbolic cross approximations, in particular for tensor product splines, are discussed.
منابع مشابه
The Smolyak Algorithm and Tensor Products of Function Spaces
The Smolyak algorithm represents one possible approach to the approximation of functions of many variables. The natural domains of de nition are given by tensor products of function spaces de ned on R or on some interval I ⊂ R. Here Besov as well as Sobolev spaces of dominating mixed smoothness come into play. They are tensor products of Besov and Sobolev spaces de ned on R.
متن کاملA Tool for Approximation in Bivariate Periodic Sobolev Spaces
We give a characterization of Sobolev spaces of bivariate periodic functions with dominating smoothness properties in terms of Sobolev spaces of univariate functions. The mixed Sobolev norm is proved to be a uniform crossnorm. This property can be used as a powerful tool in approximation theory. x1. Introduction Beside the approximation of functions from the usual isotropic periodic Sobo-lev sp...
متن کاملOn characterizations of hyperbolic harmonic Bloch and Besov spaces
We define hyperbolic harmonic $omega$-$alpha$-Bloch space $mathcal{B}_omega^alpha$ in the unit ball $mathbb{B}$ of ${mathbb R}^n$ and characterize it in terms of $$frac{omegabig((1-|x|^2)^{beta}(1-|y|^2)^{alpha-beta}big)|f(x)-f(y)|}{[x,y]^gamma|x-y|^{1-gamma}},$$ where $0leq gammaleq 1$. Similar results are extended to little $omega$-$alpha$-Bloch and Besov spaces. These obtained...
متن کاملGlobal attractor for a nonlocal hyperbolic problem on ${mathcal{R}}^{N}$
We consider the quasilinear Kirchhoff's problem$$ u_{tt}-phi (x)||nabla u(t)||^{2}Delta u+f(u)=0 ,;; x in {mathcal{R}}^{N}, ;; t geq 0,$$with the initial conditions $ u(x,0) = u_0 (x)$ and $u_t(x,0) = u_1 (x)$, in the case where $N geq 3, ; f(u)=|u|^{a}u$ and $(phi (x))^{-1} in L^{N/2}({mathcal{R}}^{N})cap L^{infty}({mathcal{R}}^{N} )$ is a positive function. The purpose of our work is to ...
متن کاملApproximations by orthonormal mapped Chebyshev functions for higher-dimensional problems in unbounded domains
This paper is concerned with approximation properties of orthonormal mapped Chebyshev functions (OMCFs) in unbounded domains. Unlike the usual mapped Chebyshev functions which are associated with weighted Sobolev spaces, the OMCFs are associated with the usual (non-weighted) Sobolev spaces. This leads to particularly simple stiffness and mass matrices for higher-dimensional problems. The approx...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Approximation Theory
دوره 161 شماره
صفحات -
تاریخ انتشار 2009